Degree: M.Sc. in Astrophysics

Modules:
astro830 Elective Advanced Lectures
astro840 Observational Astronomy

Course:
Observational Cosmology

Course No.: astro845

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Language</th>
<th>Teaching hours</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Lecture with exercises</td>
<td>English</td>
<td>2+1</td>
<td></td>
<td>ST</td>
</tr>
</tbody>
</table>

Requirements:

Preparation:

Form of Testing and Examination:
Requirements for the submodule examination (written or oral examination): successful work with the exercises

Length of Course:
1 semester

Aims of the Course:
Students with B.Sc. in Physics will be introduced to past and current experiments in cosmology, with some bias toward radio- and submillimeter astronomy

Contents of the Course:
Brief history of cosmology and its initial discoveries: cosmic expansion, cosmic microwave background. Overview of modern cosmological experiments, their major aims and technology. Aims: constraints on Big Bang and dark energy, CMB power spectrum and polarization, Sunyaev-Zeldovich effect, Supernova Ia distance measures, structure /cluster /galaxy formation, epoch of reionization, high-redshift galaxies and quasars. Experiments: APEX, LOFAR, Planck, Herschel, ALMA, SKA. Techniques: bolometer, HEMT

Recommended Literature:
J. A. Peacock; Cosmological Physics (Cambridge University Press 1998)

Contemporary Review Articles