Course: Physics of Detectors

Lecturers: P. Reiter, A. Dewald, J. Jolie, A. Zilges
Email: preiter@ikp.uni-koeln.de

Requirements for participation:
Nuclear Physics I, Quantum Mechanics

Type of module examinations:
One oral examination at the end of the module

Duration of the course:
1 semester

Aims of the course:
Study of detection methods of experimental techniques in nuclear and particle physics.

Contents of the course:
- Interaction of electrons and charged heavy particles in matter
- Coherent effects: Cherenkov and transition radiation
- Interaction of gamma-radiation in matter
- Detection of neutral particles: neutrons and neutrinos
- Measurement of 4-momentum in particle physics
- Ionisation detectors: Bragg chamber, avalanche detectors
- Position sensitive detectors: drift chambers, time-projection chamber
- Anorganic and organic scintillators
- Energy detection, calorimeter and shower detectors
- Semiconductor detectors
- Position sensitive Si detectors (strip-, pixel-detectors)
- Ge detectors
- Low background measurements
- Lifetime measurements
- Mössbauer Spectroscopy
- Basic principles of analoge and digital signal processing

Recommended literature:
A script or slides of the course will be distributed during the course.
R. Leo, Techniques for Nuclear and Particle Physics Experiments
K Kleinknecht, Detektoren für Teilchenstrahlung
G.F. Knoll, Radiation Detection and Measurement