Primary Area of Specialization: General Theory of Relativity / Quantum Field Theory

Module No.: MN-P-SP-GR-QFT

Course: Topology for Physicists

Lecturers: M. Zirnbauer

Email: zirnbauer@thp.uni-koeln.de

Category	Туре	Language	Teaching Hours	СР	Semester
Specialized Course	Lecture	English	3+1	6	ST

Requirements

Preparation:

Bachelor of physics or mathematics; the basics of exterior calculus are assumed

Form of Testing and Examination:

written or oral examination

Length of Course:

1 semester

Aims of the course: This course gives an introduction to various topological concepts and results that play an important role in modern theoretical physics.

Contents of the course:

- > Elements of homotopy theory: homeomorphic spaces, homotopic maps, fundamental group, covering spaces, homotopy groups, long exact homotopy sequence of a fibration
- ➤ Homology and cohomology: Poincare lemma, Mayer-Vietoris sequence, Cech-deRham complex, Hurewicz isomorphism theorem, spectral sequences
- Vector bundles and characteristic classes: Euler form, Thom isomorphism, Chern classes
 Applications: Berry phase; Dirac monopole problem; visualization of closed differential forms by Poincare duality; cohomology of electrical conductance; supersymmetry and Morse theory; index theorems; homotopy classification of topological insulators

Recommended literature:

R. Bott and L.W. Tu: Differential forms in algebraic topology (Springer, 1982) A.S. Schwarz, Topology for physicists (Springer, 1994)