Course: Advanced Astrophysics

Lecturers: Andreas Eckart, Lucas Labadie, Peter Schilke, Jürgen Stutzki
Email: eckart, labadie, schilke, stutzki@ph1.uni-koeln.de

Requirements for participation:
Astrophysics I

Type of module examinations:
Written test and one oral examination at the end of the module

Duration of the course:
1 semester

Aims of the course:
The students will gain the ability to apply fundamental concepts of physics to describe astrophysical phenomena and will obtain an overview of the experimental foundations of our knowledge about the cosmos. The courses will enable them to understand the fundamental principles of the universe and its history. The courses also give an introduction to topics of active research in astrophysics and thus prepare the students towards their own research activity within the master thesis.

Contents of the course:
Based on the introductory course 'Astrophysics' in the Bachelor program this course deepens the understanding in selected topical areas of relevance. These are:

- Interstellar medium: molecular clouds, HII regions, photon dominated regions, shock waves, radiation processes, radiative transfer, astrochemistry
- Star formation (low mass and high mass), planetary system formation
- Galaxies: galactic structure, morphology, dynamics, chemical evolution, nuclei of active galaxies
- Large scale structure of the universe: intergalactic distance ladder, galaxy clusters, dark matter, gravitational lenses, experimental cosmology

Recommended literature:
Binney and Merryfield, Galactic Astronomy (Princeton University Press)
Binney and Tremaine, Galactic Dynamics (Princeton University Press)
Carroll and Ostlie, An Introduction to Modern Astrophysics (Addison-Wesley)
Schneider, Einführung in die extragalaktische Astronomie & Kosmologie (Springer, Berlin)
Shu, The Physics of Astrophysics I & II (University Science Books, Mill Valley)
Unsöld and Baschek, Der neue Kosmos (Springer, Berlin)
Weigert and Wendker, Astronomie und Astrophysik (VCH Verlag)