<table>
<thead>
<tr>
<th>HERAUSGEBER:</th>
<th>Mathematisch-Naturwissenschaftliche Fakultät der Universität zu Köln</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDAKTION:</td>
<td>Dr. Harald Kierspel</td>
</tr>
<tr>
<td>ADRESSE:</td>
<td>II. Physikalisches Institut, Zülpicher Strasse 77, 50937 Köln</td>
</tr>
<tr>
<td>E-MAIL</td>
<td>kierspel@ph2.uni-koeln.de</td>
</tr>
<tr>
<td>STAND</td>
<td>08.09.2015</td>
</tr>
</tbody>
</table>
Kontaktpersonen

<table>
<thead>
<tr>
<th>Rolle</th>
<th>Personen</th>
<th>Telefonnummer</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiendekan/in:</td>
<td>Prof. Dr. André Bresges</td>
<td>(+49) 0221 470 4648</td>
<td>andre.bresges@uni-koeln.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studiengangsverantwortliche/r</td>
<td>Prof. Dr. Peter Schilke</td>
<td>(+49) 0221 470 1935</td>
<td>schilke@ph1.uni-koeln.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prüfungsausschussvorsitzende/r</td>
<td>Prof. Dr. Peter Schilke (ab 01.04.2014)</td>
<td>(+49) 0221 470 1935</td>
<td>schilke@ph1.uni-koeln.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fachstudienberater/in:</td>
<td>Dr. Harald Kierspel</td>
<td>(+49) 0221 470 6386</td>
<td>kierspel@ph2.uni-koeln.de</td>
</tr>
</tbody>
</table>
Legende

<table>
<thead>
<tr>
<th>AM</th>
<th>Aufbaumodul</th>
<th>SST</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>Basismodul</td>
<td>SWS</td>
<td>Semesterwochenstunde</td>
</tr>
<tr>
<td>EM</td>
<td>Ergänzungsmodul</td>
<td>SI</td>
<td>Studium Integrale</td>
</tr>
<tr>
<td>K</td>
<td>Kontaktzeit (= Präsenzzeit in LV)</td>
<td>UzK</td>
<td>Universität zu Köln</td>
</tr>
<tr>
<td>LV</td>
<td>Lehrveranstaltung</td>
<td>VN</td>
<td>Vor- und Nachbereitungszeit</td>
</tr>
<tr>
<td>LP</td>
<td>Leistungspunkt (engl.: CP)</td>
<td>WP</td>
<td>Wahlpflichtveranstaltung</td>
</tr>
<tr>
<td>P</td>
<td>Pflichtveranstaltung</td>
<td>WL</td>
<td>Workload = Arbeitsaufwand</td>
</tr>
<tr>
<td>SM</td>
<td>Schwerpunktmodul</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

KONTAKTPERSONEN .. III

LEGENDE ... IV

1 DAS STUDIENFACH PHYSIK .. 1
 1.1 Inhalte, Studienziele und Voraussetzungen .. 1
 1.2 Studienaufbau und -abfolge .. 1
 1.3 LP-Gesamtübersicht ... 1
 1.4 Semesterbezogene LP-Übersicht .. 3
 1.5 Zusatzbereich SI ... 4
 1.6 Berechnung der Gesamtnote .. 5

2 Basismodule ... 6
 2.1 Basismodule .. 6
 2.2 Aufbaumodule ... 24
 2.3 Schwerpunktmodule ... 48
 2.4 Ergänzungsmodul ... 48
 2.5 Bachelor-Arbeit ... 51

3 STUDIENHILFEN .. 53
 3.1 Musterstudienplan ... 53
 3.2 Fach- und Prüfungsberatung ... 55
 3.3 Weitere Informations- und Beratungsangebote .. 55
1 Das Studienfach Physik

1.1 Inhalte, Studienziele und Voraussetzungen

Für die Aufnahme des Studiums sollte ein grundsätzliches Interesse an Naturwissenschaften und deren Verständnis vorliegen.

Das Bachelorstudium wird in deutscher Sprache gelehrt. Für das Abschlussmodul (Bachelorarbeit mit Kolloquium) sollten Englischkenntnisse vorliegen, da die Fachliteratur in Englisch veröffentlicht wird.

1.2 Studienaufbau und -abfolge

Das Studium kann sowohl zum Wintersemester, also auch zum Sommersemester begonnen werden. Das dafür geschaffene zusätzliche Modulangebot (Experimentalphysik I) und die Gestaltung der Module Vektoranalysis und Lineare Algebra sowie Mathematische Methoden in unabhängige Module, ermöglichen neben dem zusätzlichen Studienbeginn in SS auch zeitnahe Wiederholungsmöglichkeiten. Die Veranstaltungen sind zu größeren thematischen Einheiten, den Modulclustern zusammengefasst. Dabei gibt es folgende übergeordnete Modulbereiche:

• Theoretische Physik: Theoretische Physik I (Klassische Mechanik), Theoretische Physik II (Quantenmechanik), Theoretische Physik III (Klassische Feldtheorie) und Theoretische Physik IV (Statistische Physik) sowie Computerphysik. In diesen Veranstaltungen werden die Fachgrundlagen der Theoretischen Physik und der Computerphysik vermittelt.

• **Praktikum:** A (Mechanik, Wärmelehre, Optik, Elektrizität) B (Fortgeschrittene Experimente aus den Bereichen: Atom- und Molekülphysik, Festkörperfysik und Kern- und Teilchenphysik). In den Praktika werden die Grundlagen in kleinen Gruppen angewandt. Durchführung, Auswertung und Darstellung von physikalischen Experimenten werden erlernt.

• **Mathematik:** Mathematische Methoden, Analysis I, II und Vektoranalysis und Lineare Algebra. In diesen Veranstaltungen wird das mathematische Grundwissen vermittelt.

• **Wahlbereich:** Einführende Veranstaltungen in benachbarten Disziplinen: Chemie, Biologie, Informatik, Mathematik, u.a.

• **Bachelorarbeit mit Kolloquium:** Bearbeitung eines individuellen Themas aus der aktuellen Forschung in einem der Forschungsschwerpunkte der Kölner Physik.

Die in den folgenden Abschnitten dargestellten Studienablaufpläne, sowie die in den Tabellen hinterlegten Zuordnungen der Module zu den jeweiligen Semestern, stellen die Empfehlung der Fachgruppe Physik dar. Die Reihenfolge der Module obliegt selbstverständlich, unter Beachtung der Modulvoraussetzungen, den Studierenden.

1.3 LP-Gesamtübersicht

Die 180 LPe des Bachelorstudiums teilen sich in 156 LPe für das Fachstudium und jeweils 12 LPe für das „Studium Integrale“ und die Bachelorarbeit.

Das Modul „Studium integrale“ ist Bestandteil aller Bachelorstudiengänge der Universität zu Köln und bietet die Möglichkeit, Kenntnisse aus einer Vielzahl anderer an der Universität vertretener Fächer zu erwerben.

Die Bachelorarbeit schließt das Studium ab. Sie behandelt ein eigenständig zu bearbeitendes begrenztes Thema der Physik, welches mit einer schriftlichen Ausarbeitung dokumentiert, sowie in einem Kolloquium mündlich vorgetragen wird.
Gesamtübersicht

<table>
<thead>
<tr>
<th>Fachstudium</th>
<th>156 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studium Integrale</td>
<td>12 LP</td>
</tr>
<tr>
<td>Bachelor-Arbeit</td>
<td>12 LP</td>
</tr>
<tr>
<td>Gesamt</td>
<td>180 LP</td>
</tr>
</tbody>
</table>

1.4 Semesterbezogene LP-Übersicht

In der Übersicht sind beide Studierendengruppen, die ihr Studium zum WiSe oder zum SoSe aufnehmen, berücksichtigt.

<table>
<thead>
<tr>
<th>Sem. (WiSe-Start)</th>
<th>Sem. (SoSe-Start)</th>
<th>Modul</th>
<th>K</th>
<th>VN</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Experimentalphysik I</td>
<td>84h</td>
<td>186h</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Mathematische Methoden</td>
<td>84h</td>
<td>186h</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Analysis I</td>
<td>84h</td>
<td>186h</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Experimentalphysik II</td>
<td>84h</td>
<td>186h</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Vektoranalysis und Lineare Algebra</td>
<td>84h</td>
<td>186h</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Analysis II</td>
<td>84h</td>
<td>186h</td>
<td>9</td>
</tr>
<tr>
<td>2 – 3</td>
<td>2 – 3</td>
<td>Praktikum A</td>
<td>112h</td>
<td>248h</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Experimentalphysik III</td>
<td>84h</td>
<td>186h</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Theoretische Physik I (Klassische Mechanik)</td>
<td>84h</td>
<td>186h</td>
<td>9</td>
</tr>
<tr>
<td>3 – 6</td>
<td>3 – 6</td>
<td>Wahlfach</td>
<td>*</td>
<td>*</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Festkörperphysik</td>
<td>56h</td>
<td>124h</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Kern- und Teilchenphysik</td>
<td>56h</td>
<td>124h</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Theoretische Physik II (Quantenmechanik)</td>
<td>84h</td>
<td>186h</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Computerphysik</td>
<td>84h</td>
<td>186h</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Astrophysik</td>
<td>56h</td>
<td>124h</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Theoretische Physik III (Klassische Feldtheorie) **</td>
<td>56 oder 84h</td>
<td>124h oder 186h</td>
<td>6 oder 9</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Theoretische Physik IV (Statistische Physik) **</td>
<td>56h oder 84h</td>
<td>124h oder 186h</td>
<td>6 oder 9</td>
</tr>
</tbody>
</table>
1.5 Zusatzbereich SI

5 + 6	4 + 5	Praktikum B	70h	290h	12
6	6	Abschlussmodul	*	*	12
1 – 6	1 – 6	Studium Integrale	*	*	12

*) Abhängig von der Wahl.

**) Es kann gewählt werden welches der Module (Theoretische Physik III oder Theoretische Physik IV) mit 6 und welches mit 9 LPen absolviert wird. Das jeweilige 9 LPe-Modul hat eine Vertiefungskomponente gegenüber dem 6 LPe-Modul.
1.6 Berechnung der Gesamtnote

Damit sich einerseits die Eingewöhnungsphase bei Studienbeginn, oder auch Phasen geringerer Konzentration während des dreijährigen Studiums, nicht gleich negativ auf die Gesamtnote auswirken, werden die drei schlechtesten Modulnoten aus der Gewichtung für die Gesamtnote herausgenommen. Nicht aus der Gewichtung herausgenommen werden können die Module Praktikum A, Praktikum B und das Abschlussmodul.

Das Modul „Studium Integrale“ wird für die Gesamtnotenberechnung nicht berücksichtigt.

In der folgenden Tabelle ist die Gewichtung der einzelnen Module für die Gesamtnote aufgelistet.

<table>
<thead>
<tr>
<th>Modul</th>
<th>LP</th>
<th>Gewicht für die Gesamtnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimentalphysik I</td>
<td>9</td>
<td>2/36*</td>
</tr>
<tr>
<td>Mathematische Methoden</td>
<td>9</td>
<td>2/36*</td>
</tr>
<tr>
<td>Analysis I</td>
<td>9</td>
<td>2/36*</td>
</tr>
<tr>
<td>Experimentalphysik II</td>
<td>9</td>
<td>2/36*</td>
</tr>
<tr>
<td>Vektoranalysis und Lineare Algebra</td>
<td>9</td>
<td>2/36*</td>
</tr>
<tr>
<td>Analysis II</td>
<td>9</td>
<td>2/36*</td>
</tr>
<tr>
<td>Praktikum A</td>
<td>12</td>
<td>3/36</td>
</tr>
<tr>
<td>Experimentalphysik III</td>
<td>9</td>
<td>2/36*</td>
</tr>
<tr>
<td>Theoretische Physik I (Mechanik)</td>
<td>9</td>
<td>2/36*</td>
</tr>
<tr>
<td>Wahlfach</td>
<td>9</td>
<td>2/36*</td>
</tr>
<tr>
<td>Festkörperphysik</td>
<td>6</td>
<td>2/36*</td>
</tr>
<tr>
<td>Kern- und Teilchenphysik</td>
<td>6</td>
<td>2/36*</td>
</tr>
<tr>
<td>Theoretische Physik II (Quantenmechanik)</td>
<td>9</td>
<td>2/36*</td>
</tr>
<tr>
<td>Computerphysik</td>
<td>9</td>
<td>2/36*</td>
</tr>
<tr>
<td>Astrophysik</td>
<td>6</td>
<td>2/36*</td>
</tr>
<tr>
<td>Theoretische Physik III (Klassische Feldtheorie) **</td>
<td>6 oder 9</td>
<td>2/36*</td>
</tr>
<tr>
<td>Theoretische Physik IV (Statistische Physik)**</td>
<td>6 oder 9</td>
<td>2/36*</td>
</tr>
<tr>
<td>Praktikum B</td>
<td>12</td>
<td>3/36</td>
</tr>
</tbody>
</table>
Abschlussmodul | 12 | 4/36
Study Integrale | 12 | 0

*) Das Gewicht bei den drei Modulen mit den schlechtesten Modulnoten ist 0.
**): Je nach Wahl entweder 6 oder 9 LPe.

2 Modulbeschreibungen und Modultabellen

Im Folgenden sind die einzelnen Module im Detail beschrieben. Unter Punkt „Studiensemester“ ist das empfohlene Semester nach Musterstudienplan angegeben. Hierbei bezieht sich die erste Angabe auf den Studienstart im Wintersemester und die Angabe in Klammern auf den Studienstart im Sommersemester.

2.1 Basismodule

Experimentalphysik I

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-Expl</td>
<td>270 Zeitstd.</td>
<td>9 LP</td>
<td>1stes Sem.</td>
<td>Jedes Se</td>
<td>ein Se</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
- a) Vorlesung
- b) Übung
- c) Prüfungsvorbereitung

2 Kontaktzeit
- 56 h
- 28 h

3 Selbststudium
- 84 h
- 84 h
- 18 h

geplante Gruppengröße
- 15-20 Studierende in der Übung

Ziele des Moduls und zu erwerbende Kompetenzen
Verständnis der Grundbegriffe der Mechanik (Kraft, Energie, Impuls, etc.) und Wärmelehre (Wärme, Temperatur, etc.) sowie der Grundlagen von Schwingungen und Wellen / Demonstration von Naturgesetzen anhand grundlegender Experimente / Mathematische Formulierung physikalischer Phänomene / Lösen einfacher physikalischer Probleme im Bereich der Mechanik und Wärmelehre.

Vorlesung und Übungen stellen hohe Ansprüche an das analytische Denkvermögen der Studierenden. Insbesondere soll auch die Fähigkeit entwickelt werden, Probleme zu abstrahieren. Die Studierenden werden explizit aufgefordert, die Übungen und Prüfungsvorbereitung teilweise im Team zu bewältigen. So besteht in der Regel die Möglichkeit, dass drei Studierende eine gemeinsame Lösung für die Übungen einreichen. Die Studierenden werden darauf hingewiesen, dass im Team die eigenen Stärken eine Hilfe für andere Studierende sein können und die eigenen Schwächen durch die Kompetenzen der anderen Teammitglieder ausgeglichen werden können. Damit schult das Modul soziale Kompetenzen wie Teamfähigkeit, Kommunikationsfähigkeit, Kritikfähigkeit und Durchsetzungsvermögen.

Inhalte des Moduls
Das Modul besteht aus einer Vorlesung mit Übungen, die folgende Themen behandelt:

1. Mechanik
 - Mechanik von Massenpunkten
 - Dynamik starrer Körper
 - Mechanik von Festkörpern, Flüssigkeiten und Gasen
 - Schwingungen (Harmonischer Oszillator, gedämpfte & erzwungene Schwingungen, gekoppelte Oszillatoren, Überlagerung, Schwebung)
 - Wellen (Wellengleichung, harmonische Wellen, Typen, Intensität, Phasen- und Gruppengeschwindigkeit, Wellenausbreitung (Reflexion und Brechung), Superposition, stehende Wellen, Schall)

2. Wärmelehre
 - Ideales Gas, kinetische Gastheorie
 - Hauptsätze der Wärmelehre, Entropie
 - Transportphänomene
 - Wärmekraftmaschinen
 - Reale Gase und Phasenumwandlungen

Literaturempfehlungen:
Halliday, Resnick, Walker: Physik (Wiley-VCH)
<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulabschlussprüfung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das erfolgreiche Bestehen der Übungen und der Klausur.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA Physik</td>
<td></td>
</tr>
<tr>
<td>BSc Geophysik und Meteorologie, Mathematik, Geographie</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Modulnote für die Gesamtnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Stutzki</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version: 14.02.2014 HK</td>
<td></td>
</tr>
</tbody>
</table>
Experimentalphysik II

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs- punkte</th>
<th>Studien- semester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-ExpII</td>
<td>270 Zeitstd.</td>
<td>9 LP</td>
<td>2tes (1tes) Sem.</td>
<td>Jedes SoSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
<td></td>
</tr>
<tr>
<td>b) Übung</td>
<td></td>
</tr>
<tr>
<td>c) Prüfungsvorbereitung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>84 h</td>
<td>15-20</td>
<td></td>
</tr>
<tr>
<td>28 h</td>
<td>84 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>18 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verständnis der Grundbegriffe der Elektrodynamik (Ladung, Strom, elektromagnetische Felder, etc.) und Optik (geometrische Optik, Wellenoptik, etc.) / Demonstration von Naturgesetzen anhand grundlegender Experimente / Mathematische Formulierungen und Lösen einfacher physikalischer Probleme im Bereich der Elektrodynamik und Optik</td>
<td></td>
</tr>
<tr>
<td>Vorlesung und Übungen stellen hohe Ansprüche an das analytische Denkvermögen der Studierenden. Insbesondere soll auch die Fähigkeit entwickelt werden, Probleme zu abstrahieren. Die Studierenden werden explizit aufgefordert, die Übungen und Prüfungsvorbereitung teilweise im Team zu bewältigen. So besteht in der Regel die Möglichkeit, dass drei Studierende eine gemeinsame Lösung für die Übungen einreichen. Die Studierenden werden darauf hingewiesen, dass im Team die eigenen Stärken eine Hilfe für andere Studierende sein können und die eigenen Schwächen durch die Kompetenzen der anderen Teammitglieder ausgeglichen werden können. Damit schult das Modul soziale Kompetenzen wie Teamfähigkeit, Kommunikationsfähigkeit, Kritikfähigkeit und Durchsetzungsvermögen.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul besteht aus einer Vorlesung mit Übungen, die folgende Themen behandelt: Elektrodynamik</td>
<td></td>
</tr>
<tr>
<td>• Elektrostatisch</td>
<td></td>
</tr>
<tr>
<td>• elektrischer Strom</td>
<td></td>
</tr>
<tr>
<td>• Magnetostatisch</td>
<td></td>
</tr>
<tr>
<td>• Spezielle Relativitätstheorie</td>
<td></td>
</tr>
<tr>
<td>• Induktion</td>
<td></td>
</tr>
<tr>
<td>• Materie im Magnetfeld</td>
<td></td>
</tr>
<tr>
<td>• Maxwell-Gleichungen im Vakuum und in Materie</td>
<td></td>
</tr>
<tr>
<td>• Wechselstrom, Schwingkreis</td>
<td></td>
</tr>
<tr>
<td>• Elektromagnetische Wellen (Wellengleichung, Ausbreitung, Huygens’sches Prinzip, Polarisation, Interferenz, stehende Wellen)</td>
<td></td>
</tr>
<tr>
<td>• Elektromagnetische Wellen in Materie und an Grenzflächen (dielektrische Funktion und Ozillatormodell, Brechung, Reflexion, Fresnel-Gleichungen)</td>
<td></td>
</tr>
<tr>
<td>• Geometrische Optik</td>
<td></td>
</tr>
</tbody>
</table>

Literaturempfehlungen:
Halliday Resnick Walker, Physik (Wiley-VCH)
Gerthsen, Physik (Springer Berlin)
Bergmann Schäfer, Lehrbuch der Experimentalphysik Band II (de Gruyter)
Demtröder: Experimentalphysik 2 (Springer)
Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulabschlussprüfung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das erfolgreiche Bestehen der Übungen und der Klausur.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA Physik</td>
<td></td>
</tr>
<tr>
<td>BSc Geophysik und Meteorologie, Mathematik, Geographie</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Modulnote für die Gesamtnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. van Loosdrecht</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version: 02.04.2014 HK</td>
<td></td>
</tr>
</tbody>
</table>
Experimentalphysik III

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
</table>

1 Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbstdstudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>84 h</td>
<td>15-20 Studierende in der Übung</td>
</tr>
<tr>
<td>28 h</td>
<td>84 h</td>
<td>18 h</td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen

Vorlesung und Übungen stellen hohe Ansprüche an das analytische Denkvermögen der Studierenden. Insbesondere soll auch die Fähigkeit entwickelt werden, Probleme zu abstrahieren. Die Studierenden werden explizit aufgefordert, die Übungen und Prüfungsvorbereitung teilweise im Team zu bewältigen. So besteht in der Regel die Möglichkeit, dass zwei Studierende eine gemeinsame Lösung für die Übungen einreichen. Die Studierenden werden darauf hingewiesen, dass im Team die eigenen Stärken eine Hilfe für andere Studierende sein können und die eigenen Schwächen durch die Kompetenzen der anderen Teammitglieder ausgeglichen werden können. Damit schult das Modul soziale Kompetenzen wie Teamfähigkeit, Kommunikationsfähigkeit, Kritikfähigkeit und Durchsetzungsvermögen.

3 Inhalte des Moduls

Das Modul besteht aus einer Vorlesung mit Übungen, die folgende Themen behandelt:

1. **Wellen und Teilchen**
 - Interferenz und Beugung (Kohärenz, Michelson-Interferometer, Doppelspalt, Gitter, Fresnel-Beugung)
 - Schwarzkörperstrahlung
 - Photoeffekt
 - Compton-Effekt
 - Beugungseffekte bei Teilchen
 - Welle-Teilchen Dualismus
 - Unschärfe-Relationen

2. **Atomphysik**
 - Rutherford-Versuch
 - Stern-Gerlach-Versuch
 - Atomstruktur, Atommodell von Bohr
 - Wasserstoffatom: Spektralserien, Auswahlregeln
 - Schrödinger-Gleichung
- Tunnel-Effekt
- Zeeman-Effekt, Stark-Effekt
- Harmonischer Oszillatore
- Atome mit vielen Elektronen
- Laser

Literaturempfehlungen:
Bergmann Schäfer, Lehrbuch der Experimentalphysik Band II (de Gruyter)
Halliday, Resnick Walker, Physik (Wiley-VCH)
Eisberg, Resnick Quantum physics (Wiley)
Gerthsen, Physik (Springer Berlin)
Feynman, Feynman Lectures on Physics Band III (Addison Wesley)
Beiser, Concepts of Modern Physics (McGraw-Hill)
Berkeley Physics Course Vol. 4 (McGraw-Hill)
Demtröder, Experimentalphysik 3 (Springer Berlin)

4 Lehr- und Lernformen
Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

5 Modulvoraussetzungen
Kenntnisse über den Inhalt der Module „Experimentalphysik I“ und „Experimentalphysik II“

6 Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine nicht bestandene Klausur kann wiederholt werden.

Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich und wird empfohlen.

Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das erfolgreiche Bestehen der Übungen und der Klausur.

8 Verwendung des Moduls (in anderen Studiengängen)
BA Physik
BSc Geophysik und Meteorologie

9 Stellenwert der Modulnote für die Gesamtnote
Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.

10 Modulbeauftragte/r
J. Jolie

11 Sonstige Informationen
Version: 14.02.2014 HK
Mathematische Methoden

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-MaMe</td>
<td>270 Zeitstd.</td>
<td>punkte: 9 LP</td>
<td>semester: 1tes (2tes) Se.</td>
<td>des Angebots: Jedes WiSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 a) Vorlesung
 b) Übung
 c) Prüfungsvorbereitung

2 Kontaktzeit
 a) Vorlesung: 56 h
 b) Übung: 28 h
 c) Prüfungsvorbereitung: ---

3 Selbststudium
 a) Vorlesung: 84 h
 b) Übung: 84 h
 c) Prüfungsvorbereitung: 18 h

geplante Gruppengröße: 15 - 20

Ziele des Moduls und zu erwerbende Kompetenzen
Die Vortragende präsentiert grundlegende mathematische Techniken und Fähigkeiten, die zur Lösung physikalischer Aufgabenstellungen benötigt werden. Dieser Kurs dient vor allem als Vorbereitung auf die Kursvorlesungen der Theoretischen Physik und stellt gezielt die dort benötigten mathematischen Hilfsmittel (insbesondere aus der Analysis und der Linearen Algebra) bereit.

Vorlesung und Übungen stellen hohe Ansprüche an das analytische Denkvermögen der Studierenden. Insbesondere soll auch die Fähigkeit entwickelt werden, Probleme zu abstrahieren. Die Studierenden werden explizit aufgefordert, die Übungen und Prüfungsvorbereitung teilweise im Team zu bewältigen. Die Studierenden werden darauf hingewiesen, dass im Team die eigenen Stärken eine Hilfe für andere Studierende sein können und die eigenen Schwächen durch die Kompetenzen der anderen Teammitglieder ausgeglichen werden können. Damit schult das Modul soziale Kompetenzen wie Teamfähigkeit, Kommunikationsfähigkeit, Kritikfähigkeit und Durchsetzungsvermögen.

Inhalte des Moduls
Das Modul besteht aus einer Vorlesung mit Übungen, die folgende Themen behandelt:
- Differentiation und Integration
- Reihen, Taylorreihe
- Vektorrechnung, Skalarprodukt, Kreuzprodukt
- Raumkurven und Linienintegrale, der Gradient
- Gruppen und Körper, komplexe Zahlen
- Differentialgleichungen
- Fourierreihen und Fouriertransformation

Literaturempfehlungen:
Arens, Hettlich, Karpfinger, Kockelkorn, Mathematik (Spektrum)
Fischer Kaul, Mathematik für Physiker, Band 1 (Teubner)
Kerner und von Wahl, Mathematik für Physiker (Springer)

Lehr- und Lernformen

Modulvoraussetzungen
Keine

Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der
Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich.

Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das erfolgreiche Bestehen der Übungen und der Klausur.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSc Geophysik und Meteorologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Modulnote für die Gesamtnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. Berg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Version: 14.02.2014 HK</td>
</tr>
</tbody>
</table>
Vektoranalysis und lineare Algebra

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-LA</td>
<td>270 Zeitstd.</td>
<td>punkte 9 LP</td>
<td>semester 2tes (1tes) Se.</td>
<td>Angebots Jedes SoSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 a) Vorlesung
 b) Übung
 c) Prüfungsvorbereitung

Kontaktzeit
 56 h
 28 h

Selbststudium
 84 h
 84 h
 18 h

geplante Gruppengröße
 15-20

Studierende in der Übung

2 Ziele des Moduls und zu erwerbende Kompetenzen

Beherrschung grundlegender mathematischer Techniken und Fähigkeiten, die zur Lösung physicalischer Aufgabenstellungen benötigt werden. Dieser Kurs dient vor allem als Vorbereitung auf die Kursvorlesungen der Theoretischen Physik und stellt gezielt die dort benötigten mathematischen Hilfsmittel (insbesondere aus der Analysis und der Linearen Algebra) bereit.

Vorlesung und Übungen stellen hohe Ansprüche an das analytische Denkvermögen der Studierenden. Insbesondere soll auch die Fähigkeit entwickelt werden, Probleme zu abstrahieren. Die Studierenden werden explizit aufgefordert, die Übungen und Prüfungsvorbereitung teilweise im Team zu bewältigen. Die Studierenden werden darauf hingewiesen, dass im Team die eigenen Stärken eine Hilfe für andere Studierende sein können und die eigenen Schwächen durch die Kompetenzen der anderen Teammitglieder ausgeglichen werden können. Damit schult das Modul soziale Kompetenzen wie Teamfähigkeit, Kommunikationsfähigkeit, Kritikfähigkeit und Durchsetzungsvermögen.

3 Inhalte des Moduls

Das Modul besteht aus einer Vorlesung mit Übungen, die folgende Themen behandelt:

- Koordinatensysteme
- Vektoranalysis
- lineare Algebra
- orthogonale und unitäre Transformationen, Darstellung von Gruppen
- Tensorrechnung, metrische Tensor
- Fouriertransformationen
- Funktionentheorie

Literaturrempfehlungen:
Arens, Hettlich, Karpfinger, Kockelkorn, Mathematik (Spektrum)
Fischer Kaul, Mathematik für Physiker, Band 1 (Teubner)
Kerner und von Wahl, Mathematik für Physiker (Springer)

4 Lehr- und Lernformen

Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

5 Modulvoraussetzungen

Keine

6 Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine nicht bestandene Klausur kann wiederrholt werden.

Eine bestandene Klausur kann nicht wiederrholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederrholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich.

Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das erfolgreiche Bestehen der Übungen und der Klausur.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSc Geophysik und Meteorologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Modulnote für die Gesamtnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. Berg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Version: 14.02.2014 HK</td>
</tr>
</tbody>
</table>
Analysis I
(entspricht dem gleichnamigen Modul des BSc Mathematik)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-Ana1</td>
<td>270 Zeitstd.</td>
<td>9 LP</td>
<td>1tes (2tes) Se</td>
<td>Jedes WiSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
a) Vorlesung
b) Übung
c) Prüfungsvorbereitung

2 Kontaktzeit
1	56 h
2	28 h
3	---

3 Selbststudium
1	112 h
2	56 h
3	18 h

4 geplante Gruppengröße
| 1 | 30 Studierende |

5 Lehr- und Lernformen
Eine vierstündige Vorlesung ergänzt durch zweistündige Übungen mit Hausaufgaben

6 Modulvoraussetzungen
Formal: Zulassung zum Studium der Physik mit dem Studienziel Bachelor
Inhaltlich: Schulmathematik auf Abiturniveau

6 Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine Klausur von 120-180 Minuten statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.
Eine nicht bestandene Klausur kann wiederholt werden.
Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.
Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich. Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

7 **Voraussetzungen für die Vergabe von Leistungspunkten**
Das erfolgreiche Bestehen der Übungen und der Klausur.

8 **Verwendung des Moduls (in anderen Studiengängen)**
Import aus dem BSc Mathematik.

9 **Stellenwert der Modulnote für die Gesamtnote**
Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.

10 **Modulbeauftragte/r**
J. Berg (für die Kooperation mit dem Modulbeauftragten des BSc Mathematik)

11 **Sonstige Informationen**
Analysis II

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-Anall</td>
<td>270 Zeitstd.</td>
<td>punkte 9 LP</td>
<td>semester 2tes (3tes) Se</td>
<td>Angebots Jedes SoSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
- a) Vorlesung
- b) Übung
- c) Prüfungsvorbereitung

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>112 h</td>
<td>30 Studierende in der Übung</td>
</tr>
<tr>
<td>28 h</td>
<td>56 h</td>
<td>18 h</td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen

3 Inhalte des Moduls

- Grundbegriffe der Topologie
- Kurven im \(\mathbb{R}^n \)
- Differentialrechnung in mehreren Veränderlichen
- Implizite Funktionen
- Gewöhnliche Differentialgleichungen
- Mehrdimensionale Integrale und elementare Transformationsformel
- Möglicherweise ausgewählte Kapitel, z.B. Variationsrechnung

Literatur: z.B.
H. Heuser, Lehrbuch der Analysis 2
O. Forster, Analysis 2
K. Königsberger, Analysis 2
Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

4 Lehr- und Lernformen

Eine vierstündige Vorlesung ergänzt durch zweistündige Übungen mit Hausaufgaben

5 Modulvoraussetzungen

Formal: Zulassung zum Studium der Physik mit dem Studienziel Bachelor

Inhaltlich: Analysis I

6 Form der Modulabschlussprüfung

Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine nicht bestandene Klausur kann wiederholt werden.
Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich.

Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das erfolgreiche Bestehen der Übungen und der Klausur.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Import aus dem BSc Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Modulnote für die Gesamtnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. Berg (für die Kooperation mit dem Modulbeauftragten des BSc Mathematik)</td>
</tr>
</tbody>
</table>

| 11 | Sonstige Informationen |
Praktikum A

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-PraktA</td>
<td>360 Zeitstd.</td>
<td>12 LP</td>
<td>2tes Se. und 3tes Se.</td>
<td>Jedes Se</td>
<td>2 Se</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Versuchsvorbereitung</td>
<td>---</td>
<td>112 h</td>
<td>---</td>
</tr>
<tr>
<td>b) Versuchsdurchführung</td>
<td>112 h</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>c) Auswertung der Versuche</td>
<td>---</td>
<td>112 h</td>
<td>24 h</td>
</tr>
<tr>
<td>d) Prüfungsvorbereitung</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen

Vermittlung von grundlegenden experimentellen Methoden an Hand von eigenständig durchzuführenden Versuchen; Grundlagen der Messwerterfassung und -verarbeitung, Bestimmen von Messunsicherheiten, Darstellung und Bewertung von experimentellen Ergebnissen; Grundlagen der wissenschaftlichen Berichtsführung; Vertiefung physikalischer Konzepte und Vorstellungen

Neben den fachlichen Fähigkeiten (hard skills) sollen den Studenten auch soziale Kompetenzen (soft skills, weiche Fähigkeiten) näher gebracht werden. Hierzu zählen u. a.:

- Teamfähigkeit,
- Kommunikationsfähigkeit,
- Belastungsfähigkeit,
- Kritikfähigkeit,
- Rhetorik/Redegewandtheit,
- Analytisches Denkvermögen,
- Eigeninitiative,
- Selbstständigkeit,
- Höflichkeit,
- Freundlichkeit,
- Disziplin,
- Flexibilität

Inhalte des Moduls

Im Anfängerpraktikum werden an grundlegenden Versuchen aus den vier Bereichen Mechanik, Wärmelehre, Optik und Elektrik die Grundmethoden des physikalischen Experimentierens sowie der Erfassung, Verarbeitung und Präsentation der Messwerte vermittelt.

Literaturempfehlungen:
- Schenk u. Kremer, Physikalisches Praktikum (Vieweg+Teubner)
- Eichler, Kronfeldt u. Sahm, Das Neue Physikalische Grundpraktikum (Springer)
- Bergmann Schäfer, Lehrbuch der Experimentalphysik Band I-III (de Gruyter)
- Lehrbücher zur Vorlesung in Experimentalphysik
 - http://www.ph1.uni-koeln.de/AP

Lehr- und Lernformen

Zu Beginn des Praktikums wird eine Einführungsveranstaltung angeboten, in der Protokollführung, Messwertbehandlung und Fehlerrechnung am Beispiel erläutert werden.

5 **Modulvoraussetzungen**
Kenntnisse über Inhalt der Module Experimentalphysik I / II bis zum Zeitpunkt des jeweiligen Versuches.

6 **Form der Modulabschlussprüfung**
Die erfolgreiche Vorbereitung, Durchführung und Auswertung der Versuche werden unbenotet testiert. Im Falle des Nichtbestehens können in jedem der beiden Teile bis zu zwei Versuche wiederholt werden oder durch andere Versuche aus dem jeweiligen Bereich ersetzt werden. Die zehn Versuche eines Teiles müssen bis Ende der anschließenden vorlesungsfreien Zeit abgeschlossen werden.

Nach erfolgreichem Bestehen der 20 Versuche erfolgt die mündliche Modulabschlussprüfung, die im Falle des Nichtbestehens wiederholt werden kann. Gegenstand der Abschlussprüfung sind der theoretische Hintergrund, der experimentelle Aufbau und die Ergebnisse der 20 Versuche.

Die Modulnote ist die Note der mündlichen Prüfung.

7 **Voraussetzungen für die Vergabe von Leistungspunkten**
Das erfolgreiche Absolvieren der Versuche und das Bestehen der mündlichen Prüfung.

8 **Verwendung des Moduls (in anderen Studiengängen)**
- BA Physik
- BSc Geophysik und Meteorologie

9 **Stellenwert der Modulnote für die Gesamtnote**
Das Gewicht der Modulnote für die Gesamtnote beträgt 1/12.

10 **Modulbeauftragte/r**
C. Straubmeier, T. Koethe

11 **Sonstige Informationen**
Version: 19.05.2015 HK
2.2 Aufbaumodule

Auf die Basismodule folgen die drei Aufbaumodule der Experimentalphysik: Festkörperphysik, Kern- und Teilchenphysik und Astrophysik. Im Praktikum B werden die Kenntnisse dieser Themengebiete durch thematisch passende Versuche vertieft. Die grundlegenden Kenntnisse der Theoretischen Physik werden in den vier Modulen Theoretische Physik I - IV (Klassische Mechanik, Quantenmechanik, Klassische Feldtheorie, Statistische Physik) vermittelt. Im Modul Computerphysik werden grundlegende Programmierkenntnisse vermittelt um numerische Methoden zur Lösung physikalischer Probleme zu behandeln.

Theoretische Physik I

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-TP1</td>
<td>270 Zeitstd.</td>
<td>9 LP</td>
<td>3tes (4tes) Se</td>
<td>Jedes WiSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
<td>56 h</td>
<td>84 h</td>
<td>15-20 Studierende in der Übung</td>
</tr>
<tr>
<td>b) Übung</td>
<td>28 h</td>
<td>84 h</td>
<td></td>
</tr>
<tr>
<td>c) Prüfungsvorbereitung</td>
<td>---</td>
<td>18 h</td>
<td></td>
</tr>
</tbody>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen

Verständnis der Grundprinzipien mathematischer Naturbeschreibung / Fähigkeit zur Abstraktion physikalischer Phänomene in mathematischer Sprache / Grundprinzipien physikalischer Theoriebildung: Axiomatik, Symmetrien, Erhaltungssätze / Umgang mit Differentialgleichungen als zentralem Werkzeug zur Beschreibung physikalischer Phänomene / Kenntnis der wichtigsten exakt lösbaren Modellprobleme der klassischen Physik / Wichtige Näherungsverfahren zur approximativen Lösung komplexer Probleme

Inhalte des Moduls

Klassische Mechanik:

Das Modul besteht aus einer Vorlesung mit Übungen, die folgende Themen behandelt:

1. Newtonsche Mechanik
 - Erhaltungssätze, Symmetriegruppen der Newtonmechanik
 - Keplerproblem
 - Schwingungen von Systemen aus Punktteilchen
2. Lagrange & Hamiltonmechanik
Lehr- und Lernformen

Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

Modulvoraussetzungen

Kenntnisse über Inhalt des Moduls Mathematische Methoden.

Form der Modulabschlussprüfung

Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine nicht bestandene Klausur kann wiederholt werden.

Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich.

Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

Voraussetzungen für die Vergabe von Leistungspunkten

Das erfolgreiche Bestehen der Übungen und der Klausur.

Verwendung des Moduls (in anderen Studiengängen)

BSc Geophysik und Meteorologie, Mathematik

Stellenwert der Modulnote für die Gesamtnote

Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.

Modulbeauftragte/r

A. Altland

Sonstige Informationen

Version: 14.02.2014 HK
Theoretische Physik II

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-TP2</td>
<td>270 Zeitstd.</td>
<td>9 LP</td>
<td>4tes (5tes) Se</td>
<td>Jedes SoSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 a) Vorlesung
 b) Übung
 c) Prüfungsvorbereitung

Kontaktzeit
 56 h
 28 h

Selbststudium
 84 h
 18 h

geplante Gruppengröße
15-20

2 Ziele des Moduls und zu erwerbende Kompetenzen

Verständnis der grundlegenden Konzepte der Quantenphysik und ihrer mathematischen Formulierung / Fähigkeit, einfache Probleme selbständig zu lösen / Verständnis der Bedeutung der Quantentheorie für die moderne Physik

Vorlesung und Übungen stellen hohe Ansprüche an das analytische Denkvermögen der Studierenden. Insbesondere soll auch die Fähigkeit entwickelt werden, Probleme zu abstrahieren. Die Studierenden werden explizit aufgefordert, die Übungen und Prüfungsvorbereitung teilweise im Team zu bewältigen.

Die Studierenden werden darauf hingewiesen, dass im Team die eigenen Stärken eine Hilfe für andere Studierende sein können und die eigenen Schwächen durch die Kompetenzen der anderen Teammitglieder ausgeglichen werden können. Damit schult das Modul soziale Kompetenzen wie Teamfähigkeit, Kommunikationsfähigkeit, Kritikfähigkeit und Durchsetzungsvermögen.

3 Inhalte des Moduls

Quantenmechanik:

Das Modul besteht aus einer Vorlesung mit Übungen, die folgende Themen behandelt:

- Phänomene in atomaren Dimensionen
- Schrödinger-Gleichung
- Hermitesche Operatoren im Hilbertraum
- Teilchen im elektromagnetischen Feld
- semiklassischer Limes
- eindimensionale Systeme: harmonischer Oszillator
- Tunneleffekt, gebundene und Streuzustände
- Drehimpuls und Drehgruppe, Spin
- Wasserstoff-Atom
- Axiome der Quantenphysik: unitäre Transformationen, Bilder der Zeitentwicklung
- Landau-Niveaus, Aharonov-Bohm-Effekt
- Näherungsverfahren, zeitunabhängige und zeitabhängige Störungstheorie
- Bosonen und Fermionen, Atome und Moleküle
- Interpretation: Messprozess, Bellsche Ungleichungen, Dekohärenz

Literaturempfehlungen:
Messiah, Quantenmechanik I und II (de Gruyter)
Feynman, Feynman lectures on Physics vol 3 (Addison Wesley)
Sakurai, Modern Quantum Mechanics (Addison Wesley)
Schwabl, Quantenmechanik (Springer)

4 Lehr- und Lernformen
Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

5 Modulvoraussetzungen
Kenntnisse über den Inhalt der Module Mathematische Methoden, Vektoranalyse und Lineare Algebra sowie Analysis I,II

6 Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine nicht bestandene Klausur kann wiederholt werden.

Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich.

Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das erfolgreiche Bestehen der Übungen und der Klausur.

8 Verwendung des Moduls (in anderen Studiengängen)
Für Wahlbereiche anderer physiknaher B.Sc oder M.Sc Studiengänge geeignet.

9 Stellenwert der Modulnote für die Gesamtnote
Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.

10 Modulbeauftragte/r
A. Rosch

11 Sonstige Informationen
Version: 14.02.2014 HK
Festkörperphysik

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-Fest</td>
<td>180 Zeitstd.</td>
<td>6 LP</td>
<td>4tes (3tes) Se</td>
<td>Jedes SoSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
<td>42 h</td>
<td>63 h</td>
<td>15-20 Studierende in der Übung</td>
</tr>
<tr>
<td>b) Übung</td>
<td>14 h</td>
<td>42 h</td>
<td></td>
</tr>
<tr>
<td>c) Prüfungsvorbereitung</td>
<td>---</td>
<td>19 h</td>
<td></td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen

Beherrschung der wichtigsten Konzepte der Festkörperphysik / Verständnis der grundlegenden Eigenschaften von Materialien, wie zum Beispiel der mechanischen Festigkeit und dem elektrischen Widerstand / Erlernen der prinzipiellen Untersuchungsmethoden an Festkörpern.

Fachübergreifende Kompetenzen + Soft Skills:
- Fähigkeit, Probleme algorithmisch zu abstrahieren; Computerprogrammierung;
- Fähigkeit, Beziehungen zwischen Beobachtungen und mikroskopischen Modellen zu analysieren und zu erstellen; Interdisziplinarität aufgrund der Verknüpfung mit Nachbarfächern (Chemie, Erdwissenschaften, ...)

3 Inhalte des Moduls

Das Modul besteht aus einer Vorlesung mit Übungen, die folgende Themen behandelt:
- Kristallstruktur
- reziproke Gitter
- Gitterschwingungen
- Bindungen in Kristallen
- Phononen
- elektronische Struktur von Stoffen
- thermische, optische, elektrische und magnetische Eigenschaften von Stoffen
- Supraleitung

Literaturempfehlungen:
- Kittel, Introduction to Solid State Physics (Wiley and Sons)
- Ibach Lüth, Festkörperphysik (Springer Berlin)
- Ashcroft Mermin, Solid State Physics (Thomson learning)
- Gross und Marx, Festkörperphysik (Oldenbourg Verlag)

4 Lehr- und Lernformen

Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

5 Modulvoraussetzungen

Kenntnisse über Inhalt der Module Experimentalphysik I-III, Mathematische Methoden" und „Vektoranalysis und Lineare Algebra“.

6 Form der Modulabschlussprüfung

Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der
Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine nicht bestandene Klausur kann wiederholt werden.

Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszeulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich.

Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das erfolgreiche Bestehen der Übungen und der Klausur.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Für Wahlbereiche anderer B.Sc oder M.Sc Studiengänge geeignet.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Modulnote für die Gesamtnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. Braden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Version: 14.02.2014 HK</td>
</tr>
</tbody>
</table>
Kern- und Teilchenphysik

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-Kern</td>
<td>180 Zeitstd.</td>
<td>6 LP</td>
<td>4tes (5tes) Se</td>
<td>Jedes SoSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 a) Vorlesung
 b) Übung
 c) Prüfungsvorbereitung

Kontaktzeit
 42 h
 14 h

Selbststudium
 63 h
 42 h
 19 h

geplante Gruppengröße
 15-20 Studierende in der Übung

2 Ziele des Moduls und zu erwerbende Kompetenzen
 Kenntnisse grundlegender Konzepte der Kern- und Teilchenphysik
 Übergreifende Methodenkenntnisse der Atom-, Kern und Teilchenphysik
 Praktische Kenntnisse und berufliche Kompetenzen in Physik-Anwendungen

 Übungen vertiefen die Problemlösungsfähigkeiten und die analytischen Fähigkeiten
 Studierende verbessern ihre kommunikativen Fähigkeiten und ihre Teamfähigkeit
 Inhalte der Vorlesung basieren auf Inhalten früherer Veranstaltungen und ermöglichen somit die Fähigkeit zur Selbsteinschätzung, Abstraktionsfähigkeit und eine erweiterte Lernfähigkeit. Vorlesung und Übung fördern das Zeitmanagement der Studierenden

3 Inhalte des Moduls
 Das Modul besteht aus einer Vorlesung mit Übungen, die folgende Themen behandelt:
 - Eigenschaften Atomkerne
 - Kernkräfte & starke Wechselwirkungen
 - Kernmodelle
 - Zerfall instabiler Kerne und angeregte Zustände
 - Beta Zerfall & schwache Wechselwirkung
 - Invarianzprinzipien und Erhaltungssätze
 - Quarkmodell der Hadronen
 - Standardmodell der Elementarteilchenphysik

 Literaturempfehlungen:
 Bethge: Kernphysik (Springer)
 Demtroeder: Experimentalphysik 4 (Springer)
 Mayer-Kuckuk: Kernphysik (Teubner)
 Krane: Introductory Nuclear Physics (Wiley & Sons)
 Casten: Nuclear Structure from a Simple Perspective (Oxford University Press)
 Heyde: Basic Ideas and Concepts in Nuclear Physics (Institute of Physics Publishing)
 Povh, Rith, Scholz, Zetsche: Teilchen und Kerne (Springer)
 Machner: Einführung in die Kern und Elementarteilchenphysik (Wiley)
 Martin: Nuclear and Particle Physics (Wiley)

4 Lehr- und Lernformen
 Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

5 Modulvoraussetzungen
Kenntnisse über Inhalt des Moduls Experimentalphysik III.

6 Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine nicht bestandene Klausur kann wiederholt werden.
Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen, zur Vorbereitung auf eine Wiederholung der Klausur, ist möglich.

Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das erfolgreiche Bestehen der Übungen und der Klausur.

8 Verwendung des Moduls (in anderen Studiengängen)
Für Wahlbereiche anderer B.Sc oder M.Sc Studiengänge geeignet.

9 Stellenwert der Modulnote für die Gesamtnote
Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.

10 Modulbeauftragte/r
P. Reiter

11 Sonstige Informationen
Version: 19.04.2017 PN
Computerphysik

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-Comp</td>
<td>270 Zeitstd.</td>
<td>9 LP</td>
<td>4tes (5tes) Se</td>
<td>Jedes SoSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

1. **Lehrveranstaltungen**
 - a) Vorlesung
 - b) Übung
 - c) Prüfungsvorbereitung

2. **Kontaktzeit**
 - 56 h
 - 28 h
 - ---

3. **Selbststudium**
 - 84 h
 - 84 h
 - 18 h

4. **geplante Gruppengröße**
 - 20 Studierende

Ziele des Moduls und zu erwerbende Kompetenzen

Die Vorlesung behandelt numerische Methoden zur Lösung physikalischer Probleme. Dabei werden zum einen wesentliche Algorithmen und numerische Verfahren eingeführt und ihre Anwendung auf Fragestellungen der Mechanik, Elektrodynamik, Quantenmechanik und statistischen Physik diskutiert. Zum anderen werden grundlegende Programmiertechniken illustriert und am Beispiel einer Programmiersprache (etwa Python oder C) konkretisiert, so dass die Studierenden hinreichend Programmiererfahrungen sammeln, um auch neue Fragestellungen numerisch behandeln zu können.

Eine wichtige Rolle dabei spielen die Übungen, bei denen kleine Programmierprojekte eigenständig bearbeitet werden.

Fachübergreifende Kompetenzen:
- Fähigkeit, Probleme algorithmisch zu abstrahieren; Computer-Programmierung

Soft Skills:
- Analytisches Denkvermögen; Kommunikation, insbesondere Kommunikation technisch abstrakter Zusammenhänge; Belastungsfähigkeit und Stressresistenz

Inhalte des Moduls

Das Modul besteht aus einer Vorlesung mit Übungen, die folgende Themen behandelt:
- Iterative Verfahren
- Numerische Lösung gewöhnlicher und partieller Differentialgleichungen
- Numerische Lösung von Gleichungssystemen, Eigenwertprobleme
- Zufallszahlen und Monte-Carlo Methoden

Parallel dazu werden folgende Aspekte der Programmiertechnik behandelt:
- Rechnerstrukturen
- Elementare algorithmische Strukturen (Schleifen, Verzweigung, Prozeduren)
- Einführung in eine imperative Programmiersprache (Python oder C)
- Einführende Aspekte objekt-orientierter Programmiertechniken
- Einführende Aspekte paralleler Programmiertechniken

Literaturempfehlungen:

Einführend:
T. Pang, An Introduction to Computational Physics, Cambridge University Press

Begleitend und weiterführend:

Lehr- und Lernformen

Parallel zu der Vorlesung finden Übungen statt, in denen die in der Vorlesung behandelten Verfahren implementiert werden. Die Übungen sind gemittelt mit Erfolg zu bestehen.
Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorkenntnisse in einer Programmiersprache sind hilfreich, werden aber nicht vorausgesetzt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind die erfolgreichen Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.</td>
</tr>
<tr>
<td></td>
<td>Eine nicht bestandene Klausur kann wiederholt werden.</td>
</tr>
<tr>
<td></td>
<td>Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.</td>
</tr>
<tr>
<td></td>
<td>Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich.</td>
</tr>
<tr>
<td></td>
<td>Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das erfolgreiche Bestehen der Übungen und der Klausur.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Für Wahlbereiche anderer physiknaher B.Sc oder M.Sc Studiengänge geeignet.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Modulnote für die Gesamtnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. Trebst</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Version: 14.02.2014 HK</td>
</tr>
</tbody>
</table>
Astrophysik

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-Astro</td>
<td>180 Zeitstd.</td>
<td>punkte 6 LP</td>
<td>semester 5tes (4tes) Se</td>
<td>Angebots Jedes WiSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 a) Vorlesung
 b) Übung
 c) Prüfungsvorbereitung

2 Kontaktzeit
 42 h
 14 h

3 Selbststudium
 63 h
 42 h
 19 h

geplante Gruppengröße
15-20 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen
Anwendung physikalischer Prinzipien auf astrophysikalische Problemstellungen / Verständnis der grundlegenden Konzepte der Astrophysik / Überblick über experimentelle Methoden der Astronomie und selbstständige Behandlung einfacher Probleme in Übungsaufgaben.

Das Modul fordert und fördert die Kompetenzen analytisches Denkvermögen, Fähigkeiten, Probleme zu abstrahlen, neue Ideen und Lösungen zu entwickeln, wissenschaftliche Methoden anzuwenden, Teamfähigkeit, Fähigkeit, eigene und andere Ideen in Frage zu stellen, eigene Wissenslücken zu erkennen und zu schließen, effizient auf ein Ziel hinzuarbeiten, sich selbst und seinen Arbeitsprozess effektiv zu organisieren und mit anderen produktiv zusammenzuarbeiten.

3 Inhalte des Moduls
Das Modul besteht aus einer Vorlesung mit Übungen, die die Grundlagen der Astronomie behandelt:
- Stellare Astrophysik: Eigenschaften, Innerer Aufbau und Entwicklung von Sternen
- Die Milchstrasse und externe Galaxien: interstellares Medium, Strahlungsprozesse, Struktur und Dynamik
- Grundlagen der Kosmologie: Verteilung der Materie im Universum, dunkle Materie, Urknall und Entwicklung

Literaturempfehlungen:
Shu, The Physical Universe (University Science Books, Mill Valley California)
Unsöld Baschek, Der neue Kosmos (Springer Verlag, Berlin)
Weigert Wendker Wisotzki, Astronomie und Astrophysik (VCH Verlag, Weinheim)
Carroll Ostlie, An Introduction to Modern Astrophysics (Pearson Education Limited)

4 Lehr- und Lernformen
Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die in Arbeitsgruppen gelöst werden.

5 Modulvoraussetzungen
Kenntnisse über Inhalt der Module Experimentalphysik I, II und III.

6 Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen (> 50% der erreichbaren Punkte), sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.
Eine nicht bestandene Klausur kann wiederholt werden.
Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermin nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.
Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich. Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das erfolgreiche Bestehen der Übungen und der Klausur.

8 Verwendung des Moduls (in anderen Studiengängen)
Für Wahlbereiche anderer B.Sc oder M.Sc Studiengänge geeignet.

9 Stellenwert der Modulnote für die Gesamtnote
Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.

10 Modulbeauftragte/r
P. Schilke

11 Sonstige Informationen
Version: 14.02.2014 HK
Theoretische Physik IIIa (Klassische Feldtheorie)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-TP3a</td>
<td>270 Zeitstd.</td>
<td>9 LP</td>
<td>5tes (6tes) Se</td>
<td>Jedes WiSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 a) Vorlesung
 b) Übung
 c) Prüfungsvorbereitung

Kontaktzeit
 56 h
 28 h

Selbststudium
 84 h
 84 h
 18 h

geplante Gruppengröße
15-20 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen

Verständnis der Grundprinzipien mathematischer Naturbeschreibung / Fähigkeit zur Abstraktion physikalischer Phänomene in mathematische Sprache / Grundprinzipien physikalischer Theoriebildung: Axiomatik, Symmetrien, Erhaltungssätze / Umgang mit Differentialgleichungen als zentralem Werkzeug zur Beschreibung physikalischer Phänomene / Kenntnis der wichtigsten exakt lösaren Modellprobleme der klassischen Physik / Wichtige Näherungsverfahren zur approximativen Lösung komplexer Probleme

Vorlesung und Übungen stellen hohe Ansprüche an das analytische Denkvermögen der Studierenden. Insbesondere soll auch die Fähigkeit entwickelt werden, Probleme zu abstrahieren. Die Studierenden werden explizit aufgefordert, die Übungen und Prüfungsvorbereitung teilweise im Team zu bewältigen.

Die Studierenden werden darauf hingewiesen, dass im Team die eigenen Stärken eine Hilfe für andere Studierende sein können und die eigenen Schwächen durch die Kompetenzen der anderen Teammitglieder ausgeglichen werden können. Damit schult das Modul soziale Kompetenzen wie Teamfähigkeit, Kommunikationsfähigkeit, Kritikfähigkeit und Durchsetzungsvermögen.

3 Inhalte des Moduls

Die Studierenden können frei wählen, ob sie der Klassischen Feldtheorie oder der Statistische Physik mehr Gewicht in dem Studium geben. Dies bedeutet, es kann entweder

1. die Klassische Feldtheorie mit 9LPen (Modul Theoretische Physik IIIa) zusammen mit der Statistischen Physik mit 6LPen (Modul Theoretische Physik IVb)
oder

2. die Statistische Physik mit 9LPen (Modul Theoretische Physik IVa) zusammen mit der Klassischen Feldtheorie mit 6LPen (Modul Theoretische Physik IIIb)

gewählt werden. Die Module mit einem Umfang von 9LPen enthalten gegenüber den Modulen mit 6LPen eine Vertiefungskomponente.

In diesem Modul werden folgende Themen der Klassischen Feldtheorie behandelt:

- Historische und begriffliche Einleitung
- Spezielle Relativitätstheorie
- Die Grundgleichungen des elektromagnetischen Feldes
- Elektrostatiske und Magnetostatik
- Elektromagnetische Wellen
- Eichinvarianz der Elektrodynamik
- Elektrodynamik kontinuierlicher Medien
- Die Grenzen der klassischen Elektrodynamik
- Vertiefung: z.B. Feldgleichungen der Gravitation und Gravitationswellen; Hydrodynamik,
Solitonen

Literaturempfehlungen:
T. Fließbach - Elektrodynamik
J. Jackson, Klassische Elektrodynamik (Gruyter)
L. Landau und E. Lifschitz - Band II: Klassische Feldtheorie

4 Lehr- und Lernformen
Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

5 Modulvoraussetzungen
Kenntnisse über Inhalt der Module „Mathematische Methoden“ und „Vektoranalysis und Lineare Algebra.“

6 Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten. Eine nicht bestandene Klausur kann wiederholt werden.

Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenerhöhung an der nächstgelegenen Prüfungstermine, wiederholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich. Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das erfolgreiche Bestehen der Übungen und der Klausur.

8 Verwendung des Moduls (in anderen Studiengängen)
Für Wahlbereiche anderer B.Sc oder M.Sc Studiengänge geeignet.

9 Stellenwert der Modulnote für die Gesamtnote
Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.

10 Modulbeauftragte/r
C. Kiefer

11 Sonstige Informationen
Version: 14.02.2014 HK
Theoretische Physik IVa (Statistische Physik)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-TP4a</td>
<td>270 Zeitstd.</td>
<td>9 LP</td>
<td>semester</td>
<td>Angebots</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5tes (6tes) Se</td>
<td>Jedes WiSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen

- **a)** Vorlesung
- **b)** Übung
- **c)** Prüfungsvorbereitung

2 Ziele des Moduls und zu erwerbende Kompetenzen

Verständnis der Grundprinzipien mathematischer Naturbeschreibung / Fähigkeit zur Abstraktion physikalischer Phänomene in mathematische Sprache / Grundprinzipien physikalischer Theoriebildung: Axiomatik, Symmetrien, Erhaltungssätze / Umgang mit Differentialgleichungen als zentralem Werkzeug zur Beschreibung physikalischer Phänomene / Kenntnis der wichtigsten exakt lösaren Modellprobleme der klassischen Physik / Wichtige Näherungsverfahren zur approximativen Lösung komplexer Probleme

Vorlesung und Übungen stellen hohe Ansprüche an das analytische Denkvermögen der Studierenden. Insbesondere soll auch die Fähigkeit entwickelt werden, Probleme zu abstrahieren. Die Studierenden werden explizit aufgefordert, die Übungen und Prüfungsvorbereitung teilweise im Team zu bewältigen.

Die Studierenden werden darauf hingewiesen, dass im Team die eigenen Stärken eine Hilfe für andere Studierende sein können und die eigenen Schwächen durch die Kompetenzen der anderen Teammitglieder ausgeglichen werden können. Damit schult das Modul soziale Kompetenzen wie Teamfähigkeit, Kommunikationsfähigkeit, Kritikfähigkeit und Durchsetzungsvermögen.

3 Inhalte des Moduls

Die Studierenden können frei wählen, ob sie der Klassischen Feldtheorie oder der Statistischen Physik mehr Gewicht in dem Studium geben. Dies bedeutet, es kann entweder

1. die Klassische Feldtheorie mit 9LPen (Modul Theoretische Physik IIIa) zusammen mit der Statistischen Physik mit 6LPen (Modul Theoretische Physik IVb)

 oder

2. die Statistische Physik mit 9LPen (Modul Theoretische Physik IVa) zusammen mit der Klassischen Feldtheorie mit 6LPen (Modul Theoretische Physik IIIb)

 gewählt werden. Die Module mit einem Umfang von 9LPen enthalten gegenüber den Modulen mit 6LPen eine Vertiefungskomponente.

In diesem Modul werden folgende Themen der Statistischen Physik behandelt:

1. Statistische Beschreibung der Natur
 - Wahrscheinlichkeiten und Verteilungen, Mikro- und Makrozustände
- Entropie und thermisches Gleichgewicht
- Gleichgewichts-Ensembles und statistische Potentiale
- Statistische Begründung der Thermodynamik

2. Thermodynamik
- Potentiale, Relationen, Prozesse, Hauptsätze
- Phasengleichgewichte

3. Gleichgewicht in wechselwirkungsfreien Systemen
- Klassisches ideales Gas
- Ideale Quantengase

4. Gleichgewicht in wechselwirkenden Systemen
- Molekularfeld-Methode
- Ferromagnetische Systeme, Phasenübergänge, kritische Phänomene

5. Vertiefung: z.B. Einführung in Nichtgleichgewichts-Phänomene und stochastische Prozesse; ungeordnete Systeme

Literaturempfehlungen:
Schwabl, Statistische Mechanik (Springer)
Huang, Statistical Mechanics (Wiley)
Landau-Lifshitz, Theoretische Physik Bd. V (Akademie-Verlag)
L. Peliti, Statistical Mechanics in a Nutshell (Princeton UP)
Plischke and Bergersen, Equilibrium Statistical Mechanics (World scientific)
H. Callen, Thermodynamics (Wiley)
N.G. van Kampen, Statistical Processes in Physics and Chemistry (North Holland)

4 Lehr- und Lernformen
Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

5 Modulvoraussetzungen
Kenntnisse über Inhalt der Module „Mathematische Methoden“ und „Vektoranalysis und Lineare Algebra.“

6 Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine nicht bestandene Klausur kann wiederholt werden.

Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich.

Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das erfolgreiche Bestehen der Übungen und der Klausur.

8 Verwendung des Moduls (in anderen Studiengängen)
Für Wahlbereiche anderer B.Sc oder M.Sc Studiengänge geeignet.
9 Stellenwert der Modulnote für die Gesamtnote
Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.

10 Modulbeauftragte/r
M. Lässig

11 Sonstige Informationen
Version: 14.02.2014 HK

Theoretische Physik IIIb (Klassische Feldtheorie)

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-TP3b</td>
<td>180 Zeitstd.</td>
<td>6 LP</td>
<td>5tes (6tes) Se</td>
<td>Jedes WiSe</td>
<td>Ein Se</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 a) Vorlesung
 b) Übung
 c) Prüfungsvorbereitung

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 h</td>
<td>63 h</td>
<td>15-20 Studierende</td>
</tr>
<tr>
<td>14 h</td>
<td>42 h</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>19 h</td>
<td></td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen
Kenntnis und Beherrschung der Grundbegriffe der statistische Physik / Fähigkeit zur Lösung von einfachen Aufgaben aus dem Gebiet der statistischen Physik und der Thermodynamik
Vorlesung und Übungen stellen hohe Ansprüche an das analytische Denkvermögen der Studierenden. Insbesondere soll auch die Fähigkeit entwickelt werden, Probleme zu abstrahieren. Die Studierenden werden explizit aufgefordert, die Übungen und Prüfungsvorbereitung teilweise im Team zu bewältigen. So besteht in der Regel die Möglichkeit, dass zwei Studierende eine gemeinsame Lösung für die Übungen einreichen.
Die Studierenden werden darauf hingewiesen, dass im Team die eigenen Stärken eine Hilfe für andere Studierende sein können und die eigenen Schwächen durch die Kompetenzen der anderen Teammitglieder ausgeglichen werden können. Damit schult das Modul soziale Kompetenzen wie Teamfähigkeit, Kommunikationsfähigkeit, Kritikfähigkeit und Durchsetzungsvermögen.

3 Inhalte des Moduls
Die Studierenden können frei wählen, ob sie der Klassischen Feldtheorie oder der Statistische Physik mehr Gewicht in dem Studium geben. Dies bedeutet, es kann entweder
1. die Klassische Feldtheorie mit 9LPen (Modul Theoretische Physik IIIa) zusammen mit der Statistischen Physik mit 6LPen (Modul Theoretische Physik IVb)
2. die Statistische Physik mit 9LPen (Modul Theoretische Physik IVa) zusammen mit der Klassischen Feldtheorie mit 6LPen (Modul Theoretische Physik IIIb) gewählt werden. Die Module mit einem Umfang von 9LPen enthalten gegenüber den Modulen mit 6LPen eine Vertiefungskomponente.

In diesem Modul werden folgende Themen der Klassischen Feldtheorie behandelt:

- Historische und begriffliche Einleitung
- Spezielle Relativitätstheorie
- Die Grundgleichungen des elektromagnetischen Feldes
- Elektrostatik und Magnetostatik
- Elektromagnetische Wellen
- Eichinvarianz der Elektrodynamik
- Elektrodynamik kontinuierlicher Medien
- Die Grenzen der klassischen Elektrodynamik

Literaturempfehlung:
- T. Fließbach - Elektrodynamik
- J. Jackson, Klassische Elektrodynamik (Gruyter)
- L. Landau und E. Lifschitz - Band II: Klassische Feldtheorie

4 **Lehr- und Lernformen**
Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

5 **Modulvoraussetzungen**
Kenntnisse über Wärmelehre aus den Modulen Experimentalphysik und Praktikum, Inhalt des Moduls Theoretische Physik II (Quantenmechanik)

6 **Form der Modulabschlussprüfung**
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine nicht bestandene Klausur kann wiederholt werden.

Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich.

Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

7 **Voraussetzungen für die Vergabe von Leistungspunkten**
Das erfolgreiche Bestehen der Übungen und der Klausur.

8 **Verwendung des Moduls (in anderen Studiengängen)**
Für Wahlbereiche anderer B.Sc oder M.Sc Studiengänge geeignet.

9 **Stellenwert der Modulnote für die Gesamtnote**
Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.

10 Modulbeauftragte/r
C. Kiefer

11 Sonstige Informationen
Version: 14.02.2014 HK

| Theoretische Physik IVb (Statistische Physik) |
|--|--|
| Kennnummer | Workload |
| MN-P-TP4b | 180 Zeitstd. |
| Leistungs- | 6 LP |
| punkte | |
| Studien- | 5tes (6tes) Se |
| -semester | |
| Häufigkeit des | Jedes WiSe |
| Angeboten | |
| Dauer | Ein Se |
| Kontaktzeit | |
| a) Vorlesung | 42 h |
| b) Übung | 14 h |
| c) Prüfungsvorbereitung | --- |
| Selbststudium | 63 h |
| geplante | 42 h |
| Gruppengröße | 19 h |
| 15-20 Studierende | |
| Ziele des Moduls und zu erwerbende | |
| Kompetenzen | |

Kenntnis und Beherrschung der Grundbegriffe der statistische Physik / Fähigkeit zur Lösung von einfachen Aufgaben aus dem Gebiet der statistischen Physik und der Thermodynamik

Vorlesung und Übungen stellen hohe Ansprüche an das analytische Denkvermögen der Studierenden. Insbesondere soll auch die Fähigkeit entwickelt werden, Probleme zu abstrahieren. Die Studierenden werden explizit aufgefordert, die Übungen und Prüfungsvorbereitung teilweise im Team zu bewältigen.

<table>
<thead>
<tr>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden können frei wählen, ob sie der Klassischen Feldtheorie oder der Statistische Physik mehr Gewicht in dem Studium geben. Dies bedeutet, es kann entweder</td>
</tr>
<tr>
<td>1. die Klassische Feldtheorie mit 9LPen (Modul Theoretische Physik IIIa) zusammen mit der</td>
</tr>
<tr>
<td>Statistischen Physik mit 6LPen (Modul Theoretische Physik IVb)</td>
</tr>
<tr>
<td>oder</td>
</tr>
</tbody>
</table>
2. die Statistische Physik mit 9LPen (Modul Theoretische Physik IVa) zusammen mit der Klassischen Feldtheorie mit 6LPen (Modul Theoretische Physik IIIb) gewählt werden. Die Module mit einem Umfang von 9LPen enthalten gegenüber den Modulen mit 6 LPen eine Vertiefungskomponente.

In diesem Modul werden folgende Themen der Statistischen Physik behandelt:

1. Statistische Beschreibung der Natur
 - Wahrscheinlichkeiten und Verteilungen, Mikro- und Makrozustände
 - Entropie und thermisches Gleichgewicht
 - Gleichgewichts-Ensembles und statistische Potentiale
 - Statistische Begründung der Thermodynamik

2. Thermodynamik
 - Potentiale, Relationen, Prozesse, Hauptsätze
 - Phasengleichgewichte

3. Gleichgewicht in wechselwirkungsfreien Systemen
 - Klassisches ideales Gas
 - Ideale Quantengase

4. Gleichgewicht in wechselwirkenden Systemen
 - Molekularfeld-Methode
 - Ferromagnetische Systeme, Phasenübergänge, kritische Phänomene

Literaturempfehlung:
- Schwabl, Statistische Mechanik (Springer)
- Huang, Statistical Mechanics (Wiley)
- Landau-Lifshitz, Theoretische Physik Bd. V (Akademie-Verlag)
- L. Peliti, Statistical Mechanics in a Nutshell (Princeton UP)
- Plischke and Bergersen, Equilibrium Statistical Mechanics (World scientific)
- H. Callen, Thermodynamics (Wiley)
- N.G. van Kampen, Statistical Processes in Physics and Chemistry (North Holland)

4 Lehr- und Lernformen
Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

5 Modulvoraussetzungen
Kenntnisse über Wärmelehre aus den Modulen Experimentalphysik und Praktikum, Inhalt des Moduls Theoretische Physik II (Quantenmechanik)

6 Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich.

Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.
7 | Voraussetzungen für die Vergabe von Leistungspunkten
 | Das erfolgreiche Bestehen der Übungen und der Klausur.

8 | Verwendung des Moduls (in anderen Studiengängen)
 | Für Wahlbereiche anderer B.Sc oder M.Sc Studiengänge geeignet.

9 | Stellenwert der Modulnote für die Gesamtnote
 | Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.

10 | Modulbeauftragte/r
 | M. Lässig

11 | Sonstige Informationen
 | Version: 14.02.2014 HK
Praktikum B

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit des</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-PraktB</td>
<td>360 Zeitstd.</td>
<td>punkte 12 LP</td>
<td>semester 5tes und 6tes Se (4tes und 5tes Se)</td>
<td>Jedes Se</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lehrveranstaltungen</td>
<td>Kontaktzeit</td>
<td>Selbststudium</td>
<td>geplante Gruppengröße</td>
</tr>
<tr>
<td></td>
<td>a) Versuchsvorbereitung</td>
<td>---</td>
<td>130 h</td>
<td>2 – 3</td>
</tr>
<tr>
<td></td>
<td>b) Versuchsdurchführung</td>
<td>70 h</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Auswertung der Versuche</td>
<td>---</td>
<td>130 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) Prüfungsvorbereitung</td>
<td>---</td>
<td>30 h</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ziele des Moduls und zu erwerbende Kompetenzen</td>
<td>Kontaktzeit</td>
<td>Selbststudium</td>
</tr>
<tr>
<td></td>
<td>Vermittlung von anspruchsvollen physikalischen Zusammenhängen an Hand von eigenständig durchzuführenden Experimenten / Bestimmen von Messgrößen und ihren Fehlern / Befassen mit moderner experimenteller Methodik sowie der Darstellung wissenschaftlicher Zusammenhänge in schriftlicher Form</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neben den fachlichen Fähigkeiten (hard skills) sollen den Studenten auch soziale Kompetenzen (soft skills, weiche Fähigkeiten) näher gebracht werden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hierzu zählen u. a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▷ Teamfähigkeit, Kommunikationsfähigkeit, Belastungsfähigkeit, Stressresistenz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▷ Kritikfähigkeit, Durchsetzungskraft, Rhetorik/ Redegewandtheit, Analytisches Denkvermögen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▷ Eigeninitiative, Selbstständigkeit,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▷ Disziplin, Flexibilität</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Inhalte des Moduls</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Im Praktikum B werden fortgeschrittene Methoden des physikalischen Experimentierens an komplexen Versuchen aus den drei Bereichen Atomphysik, Festkörperphysik und Kern- und Teilchenphysik vermittelt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literaturempfehlungen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Literaturangaben sind individuell von den Experimenten abhängig und können den Versuchsbeschreibungen entnommen werden, die mit der Anmeldung ausgeteilt werden, bzw. auf den Webseiten der Institute zu finden sind.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Lehr- und Lernformen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Das Praktikum B besteht aus 9 Versuchen mit je 3 Versuchen pro Bereich. Mit der Anmeldung zum Praktikum erfolgt die Zuteilung in Gruppen zu 2-3 Personen pro Experiment. Vor jedem Versuch findet eine Vorbesprechung statt, in der der theoretische Hintergrund des Experiments behandelt wird. Vorbereitung, Messungen und Auswertung sind schriftlich zu dokumentieren.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Durchführung der Versuche in der vorlesungsfreien Zeit ist nach Absprache mit den Modulverantwortlichen/Praktikumsassistenten möglich.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weitere Informationen entnehmen sie bitte der offiziellen Webseite des Praktikums.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | |
|---|---|
| 5 | Modulvoraussetzungen |
| | Erfolgreiche Teilnahme an den Modulen: Praktikum A und Experimentalphysik I + II + III |

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Form der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>
| | Die erfolgreiche Vorbereitung, Durchführung und Auswertung der Versuche wird unbenotet testiert. Sämtliche neun Versuche müssen bestanden werden, nicht bestandene Versuche können zweimal

7 Voraussetzungen für die Vergabe von Leistungspunkten
Sämtliche drei Prüfungen müssen bestanden werden.

8 Verwendung des Moduls (in anderen Studiengängen)
Für Wahlbereiche anderer B.Sc oder M.Sc Studiengänge geeignet.

9 Stellenwert der Modulnote für die Gesamtnote
Das Gewicht der Modulnote für die Gesamtnote beträgt 1/12.

10 Modulbeauftragte/r
T. Lorenz (Gesamtmodul und Teilbereich Festkörperphysik), F. Lewen (Teilbereich Atomphysik), P. Reiter (Teilbereich Kern- und Teilchenphysik)

11 Sonstige Informationen
Version: 08.09.2015 HK
2.3 Schwerpunktmodule

Entfällt

2.4 Ergänzungsmodule

Im Wahlfachbereich und auch im Studium Integrale können zusätzliche Kenntnisse benachbarter Disziplinen erworben werden. Wobei das Wahlfach typischer Weise thematisch aus dem Bereich der Mathematisch Naturwissenschaftlichen Fakultät stammen sollte und Veranstaltungen zum Studium Integrale aus allen Fächern der Universität zu Köln gewählt werden können.

<table>
<thead>
<tr>
<th>Titel des Moduls: Wahlfach Bachelor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennnummer</td>
</tr>
<tr>
<td>MN-P-WaBa</td>
</tr>
</tbody>
</table>

1 | Lehrveranstaltungen |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
</tr>
<tr>
<td>b) Seminar</td>
</tr>
<tr>
<td>c) Übung</td>
</tr>
<tr>
<td>d) Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
</table>

2 | Ziele des Moduls und zu erwerbende Kompetenzen |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermittlung von Grundlagenwissen in einem weiteren naturwissenschaftlichen Fach</td>
</tr>
</tbody>
</table>

3 | Inhalte des Moduls |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Das nichtphysikalische Wahlfach Bachelor umfasst Veranstaltungen/Module mit einem Gesamtumfang von 9 LPen. Dieses ist in der Regel ein Modul, kann sich aber auch aus zwei Modulen mit einem Gesamtumfang von mindestens 9LPen zusammensetzen. Dies kann z.B. eine Vorlesung mit Übungen sein (4+2 SWS / 9LPe) oder Veranstaltungen mit anderer Struktur, wobei der Gesamtumfang mindestens 9 LPe sein muss. Der Inhalt des Moduls ergibt sich aus der Modulbeschreibung der gewählten Veranstaltung.</td>
</tr>
</tbody>
</table>

Literaturempfehlungen: Die Literaturangaben ergeben sich aus den Modulbeschreibungen der gewählten Veranstaltungen.

Mögliche Wahlfächer sind:
- **Informatik**: Informatik I oder Informatik II
- Geophysik und Meteorologie: z.B.: Geophysik des Erdkörpers; Geophysikalische Fluidynamik: Ozeane, Atmosphäre und Weltraum; Geophysikalische Exploration und
<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Organisation des Wahlfaches erfolgt durch den zugehörigen Fachbereich.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe zugehörige Modulbeschreibung des Fachbereichs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe zugehörige Modulbeschreibung des Fachbereichs</td>
<td></td>
</tr>
<tr>
<td>Das nicht bestandene Modul kann einmal durch eine andere Auswahl an Veranstaltungen kompensiert werden.</td>
<td></td>
</tr>
<tr>
<td>Eine nicht bestandene Prüfung kann wiederholt werden.</td>
<td></td>
</tr>
<tr>
<td>Eine bestandene Prüfung kann nicht wiederholt werden.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe zugehörige Modulbeschreibung/-en des Fachbereichs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe zugehörige Modulbeschreibung des Fachbereichs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Modulnote für die Gesamtnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Gewicht der Modulnote für die Gesamtnote beträgt 1/18. Falls die Note dieses Moduls zu den drei schlechtesten Modulnoten aus den Modulen gemäß Abschnitt 1.6. gehört, beträgt das Gewicht für die Gesamtnote 0.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der Prüfungsausschussvorsitzende</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version: 14.02.2014 HK</td>
<td></td>
</tr>
<tr>
<td>Studium Integrale</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MN-P-StInt</td>
</tr>
<tr>
<td>Workload</td>
<td>360 Zeitstd.</td>
</tr>
<tr>
<td>Leistungs-</td>
<td>12 LP</td>
</tr>
<tr>
<td>punkte</td>
<td>Studien-</td>
</tr>
<tr>
<td>semester</td>
<td>1tes bis 6tes</td>
</tr>
<tr>
<td>S</td>
<td>Se.</td>
</tr>
<tr>
<td>Häufigkeit des</td>
<td>Angebots</td>
</tr>
<tr>
<td>Dauer</td>
<td>abhängig von der individuellen Wahl.</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>a) Vorlesung</td>
<td>abhängig von der individuellen Wahl.</td>
</tr>
<tr>
<td>b) Seminar</td>
<td>Selbststudium</td>
</tr>
<tr>
<td>c) Übung</td>
<td>abhängig von der individuellen Wahl.</td>
</tr>
<tr>
<td>d) Praktikum</td>
<td>geplante Gruppengröße abhängig von der individuellen Wahl.</td>
</tr>
<tr>
<td>2 Ziele des Moduls und zu erwerbende Kompetenzen</td>
<td>Vermittlung von fachübergreifend berufsqualifizierenden Fähigkeiten und Soft skills</td>
</tr>
<tr>
<td></td>
<td>Abhängig von den gewählten Veranstaltungen</td>
</tr>
<tr>
<td>4 Lehr- und Lernformen</td>
<td>Die Organisation dieses Moduls bleibt den Studierenden überlassen, da eine vorgegebene zeitliche und fachliche Eingliederung aufgrund der Vielzahl der Kombinationsmöglichkeiten und des individuellen Studienverlaufs nicht sinnvoll ist.</td>
</tr>
<tr>
<td>5 Modulvoraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>6 Form der Modulabschlussprüfung</td>
<td>Die Art der Prüfung richtet sich nach der jeweils gewählten Veranstaltung und wird vom verantwortlichen Dozenten in der Veranstaltungsankündigung festgelegt.</td>
</tr>
<tr>
<td>7 Voraussetzungen für die Vergabe von Leistungspunkten</td>
<td>Erfolgreiche Teilnahme an den Veranstaltungen</td>
</tr>
<tr>
<td></td>
<td>Die Art der Prüfung richtet sich nach der jeweils gewählten Veranstaltung und wird vom</td>
</tr>
</tbody>
</table>
2.5 Bachelor-Arbeit

Zum Abschluss des Bachelorstudiums folgt die Bachelorarbeit, in der ein begrenztes Problems der Physik nach wissenschaftlichen Methoden selbstständig bearbeitet wird, und wissenschaftlich schriftlich und mündlich (Kolloquium) dargestellt wird.

<table>
<thead>
<tr>
<th>Titel des Moduls: Bachelorarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennnummer</td>
</tr>
<tr>
<td>MN-P-Bac</td>
</tr>
<tr>
<td>Workload</td>
</tr>
<tr>
<td>360 Zeitstd.</td>
</tr>
<tr>
<td>Leistungspunkte</td>
</tr>
<tr>
<td>12 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>6tes Sem.</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
</tr>
<tr>
<td>Kontinuierlich, das Modul ist nicht an Vorlesungszeiten gebunden.</td>
</tr>
<tr>
<td>Dauer</td>
</tr>
<tr>
<td>10 Wochen</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td>a) Bachelorarbeit</td>
</tr>
<tr>
<td>b) Kolloquium</td>
</tr>
<tr>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>Abhängig von der speziellen Themenwahl</td>
</tr>
<tr>
<td>1 h</td>
</tr>
<tr>
<td>Selbststudium</td>
</tr>
<tr>
<td>Abhängig von der speziellen Themenwahl</td>
</tr>
<tr>
<td>24 h</td>
</tr>
<tr>
<td>geplante Gruppengröße</td>
</tr>
<tr>
<td>individuelle Betreuung</td>
</tr>
</tbody>
</table>

2 | Ziele des Moduls und zu erwerbende Kompetenzen |
Selbständige Bearbeitung eines begrenzten Problems der Physik nach wissenschaftlichen Methoden und deren wissenschaftliche schriftliche und mündliche Darstellung.

Fachübergreifende Kompetenzen + Soft Skills: Zeitmanagement, Rhetorik, Selbstdarstellung, wissenschaftliche Argumentation, Präsentation und Dokumentation.

Literaturempfehlungen:
Die Literatur ist von dem individuellen Thema der Arbeit abhängig und wird zu Beginn des Moduls von dem/der jeweiligen Betreuer/in genannt.

4 Lehr- und Lernformen

Auf begründeten schriftlichen Antrag hin kann die oder der Vorsitzende des Prüfungsausschusses eine Nachfrist von maximal vier Wochen gewähren; der Antrag ist vor Ablauf der Frist im Prüfungsamt einzureichen.

Spätestens 8 Wochen nach Abschluss der Bachelorarbeit findet ein Kolloquium statt, in dem der/die Kandidat/in über das Thema der Arbeit berichtet. Die Vortragsdauer soll 20 Minuten nicht überschreiten, die Zeit für Fragen soll 10 Minuten nicht übersteigen.

5 Modulvoraussetzungen
Kenntnis der Inhalte der im Studienplan in den ersten fünf Semestern vorgesehenen Veranstaltungen. Vor der Ausgabe der Arbeit sollen mindestens 148 LPe erbracht worden sein.

6 Form der Modulabschlussprüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das erfolgreiche Bestehen der Bachelorarbeit und des Kolloquiums.

8 Verwendung des Moduls (in anderen Studiengängen)
Entfällt.

9 Stellenwert der Modulnote für die Gesamtnote
Das Gewicht der Modulnote für die Gesamtnote beträgt 1/9.

10 Modulbeauftragte/r
Der Prüfungsausschussvorsitzende

11 Sonstige Informationen
Version: 14.2.2014 HK
3 Studienhilfen

3.1 Musterstudienpläne

Studienverlaufsplan für den Studienbeginn im Wintersemester:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum A</td>
<td>Kern- und Teilchenphysik</td>
<td>Praktikum B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimentalphysik I</td>
<td>Experimentalphysik II</td>
<td>Experimentalphysik III</td>
<td>Festkörperphysik</td>
<td>Astrophysik</td>
<td></td>
</tr>
<tr>
<td>Analysis I</td>
<td>Analysis II</td>
<td>Computerphysik</td>
<td>Theor. Physik IV Statistische Physik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wahlfach (9LPe)
zeitliche und fachliche Aufteilung von der individuellen Wahl abhängig

Studium Integrale (12LPe)
zeitliche und fachliche Aufteilung von der individuellen Wahl abhängig

Studienverlaufsplan für den Studienbeginn im Sommersemester:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum A</td>
<td>Praktikum B</td>
<td>Abschlussmodul Bachelorarbeit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimentalphysik I</td>
<td>Experimentalphysik II</td>
<td>Experimentalphysik III</td>
<td>Festkörperphysik</td>
<td>Astrophysik</td>
<td>Kern- und Teilchenphysik</td>
</tr>
<tr>
<td>Analysis I</td>
<td>Analysis II</td>
<td>Computerphysik</td>
<td>Theor. Physik IV Statistische Physik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wahlfach (9LPe)
zeitliche und fachliche Aufteilung von der individuellen Wahl abhängig

Studium Integrale (12LPe)
zeitliche und fachliche Aufteilung von der individuellen Wahl abhängig

Die Termine des Vorkurses werden rechtzeitig auf den Webseiten bekannt gegeben. Die Teilnahme wird eindringlich empfohlen.

3.2 Fach- und Prüfungsberatung

Neben der Allgemeinen Studienberatung durch die Zentrale Studienberatung der Universität bietet die Fachgruppe eine Fachstudienberatung (verantwortlich Dr. Harald Kierspel und in Vertretung Dr. Petra Neubauer-Guenther). Angesprochen sind hier Schülerinnen und Schüler, die ein Physikstudium in Betracht ziehen, Studierenden, die ihr Studium aufnehmen und Studierende die sich im Studium befinden. Neben einer festen ganzjährig angebotenen wöchentlich stattfindenden offenen Sprechstunde, können kurzfristig individuelle persönliche Gesprächstermine vereinbart werden. Detaillierte Fragen werden auch per Email oder Telefon beantwortet.

Im Rahmen der Studienberatung werden auch allgemeine Fragen zu Prüfungen und deren Organisation behandelt. Daneben stehen für Fragen zur Prüfungsorganisation auch die Mitarbeiterinnen des Prüfungsamtes zur Verfügung.

3.3 Weitere Informations- und Beratungsangebote

Glücklicher weise besitzt die Fachgruppe Physik sehr engagierte Studierende, die im Rahmen ihrer Fachschaftsarbeitenbereitlich Hilfestellung für die Studierenden anbietet. Dies umfasst z.B. Orientierungseinheiten zu Beginn des Studiums, aber auch Beratungstätigkeiten während des Studiums. Die Fachschaft organisiert weiterhin Tutorien zu allen Anfangsmodulen, an denen die Studierenden auf freiwilliger Basis teilnehmen können.
Für Studierende, die über das Erasmusprogramm einen Teil Ihres Studiums im Ausland absolvieren möchten steht eine Erasmusberatung (verantwortlich Prof. Jolie) zur Verfügung.

Neben den Beratungsangeboten des Faches steht den Studierenden an der Universität zu Köln ein reichhaltiges Beratungsangebot zur Verfügung. Die wichtigsten Ansprechpartner sind in der folgenden Tabelle aufgelistet.

<table>
<thead>
<tr>
<th>Zentrale Studienberatung</th>
<th>Allgemeine Fragen zum Studium, Fächerwahl etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studierendensekretariat</th>
<th>Fragen zur Einschreibung, Rückmeldung etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kölner Studentenwerk</th>
<th>Soziale Aspekte im Zusammenhang mit dem Studium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASTA</th>
<th>Studierendenvertretung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rektoratsbeauftragter für Menschen mit Behinderung</th>
<th>Studieren mit Behinderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Akademisches Auslandsamt</th>
<th>Studieren mit Migrationshintergrund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zentrale Gleichstellungsbeauftragte</th>
<th>Vereinbarkeit von Familie und Studium, Sexualisierte Diskriminierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td></td>
</tr>
</tbody>
</table>